skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Steiner, Emily_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This work presents improved compatibility in an elastomer/π‐conjugated polymer blend through side chain functionalization of the electronic polymer. Poly[(3‐(6‐bromohexyl)thiophene)‐ran‐(3‐hexylthiophene)] (P3BrxHT,x = 0%–100%) was synthesized (i) to improve miscibility with polybutadiene (PB) elastomer through altered π–π interactions and (ii) to covalently bond across phase‐segregated interfaces. Functionalization led to morphology with reduced domain sizes to improve crack onset strain from 7% to 40%. Furthermore, UV‐activated crosslinking reinforced mechanically weak interfaces and yielded at least an additional 40% increase in crack onset strain. Charge mobility in PB/P3BrxHT organic field‐effect transistors showed minimal dependence on bromide concentration and no negative effects from crosslinking. Functionalization was an effective method to reduce brittleness in PB/P3BrxHT blends through morphology modification and crosslinking to improve stability towards strain for potential stretchable electronic applications. © 2019 Society of Chemical Industry 
    more » « less